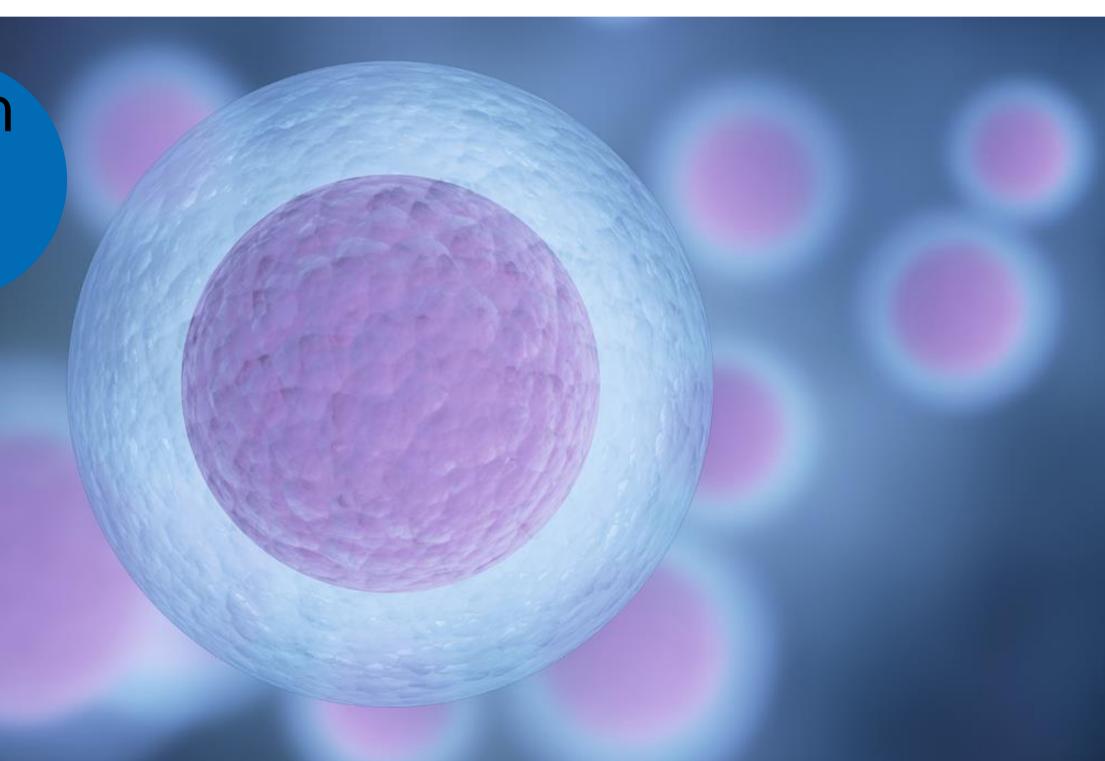
#### Recent Developments in the Transmission of Human Life

19-21 January 2023 Berlin, Germany

Welcome to all Participants






#### Recent Developments in the Transmission of Human Life

Laparoscopy in advanced ovarian cancer
How far can we go ?

Prof. Christophe Pomel Dr. Sabrina Madad



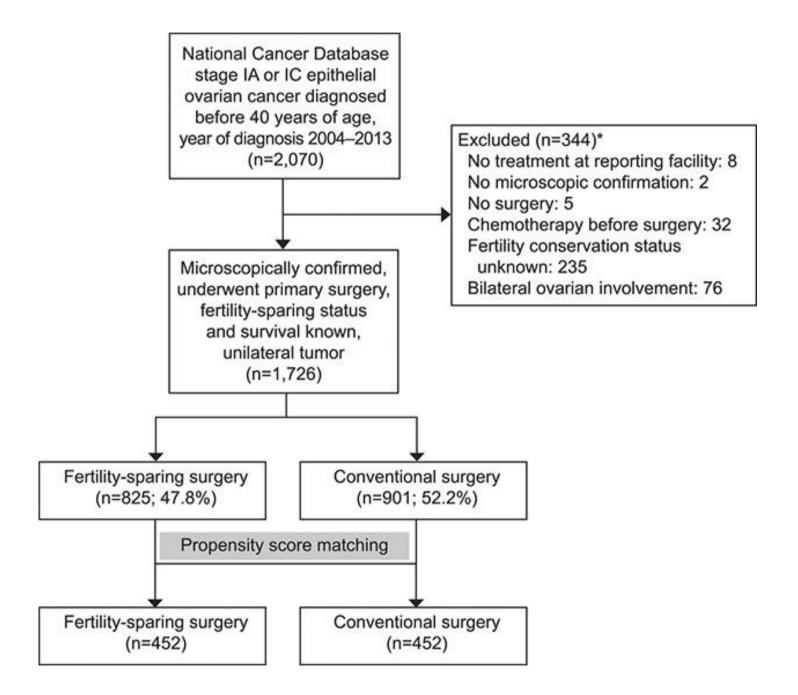


#### **Faculty Disclosure**

Roche, AstraZeneca, MSD, Clovis, Pharmamar, Storz



#### FERTILITY SPARING SURGERY IN OVARIAN CANCER?


~10% of all patients with epithelial ovarian carcinoma are younger than 40 years old and may have not completed their childbearing

#### **ELIGIBLE PATIENT?**

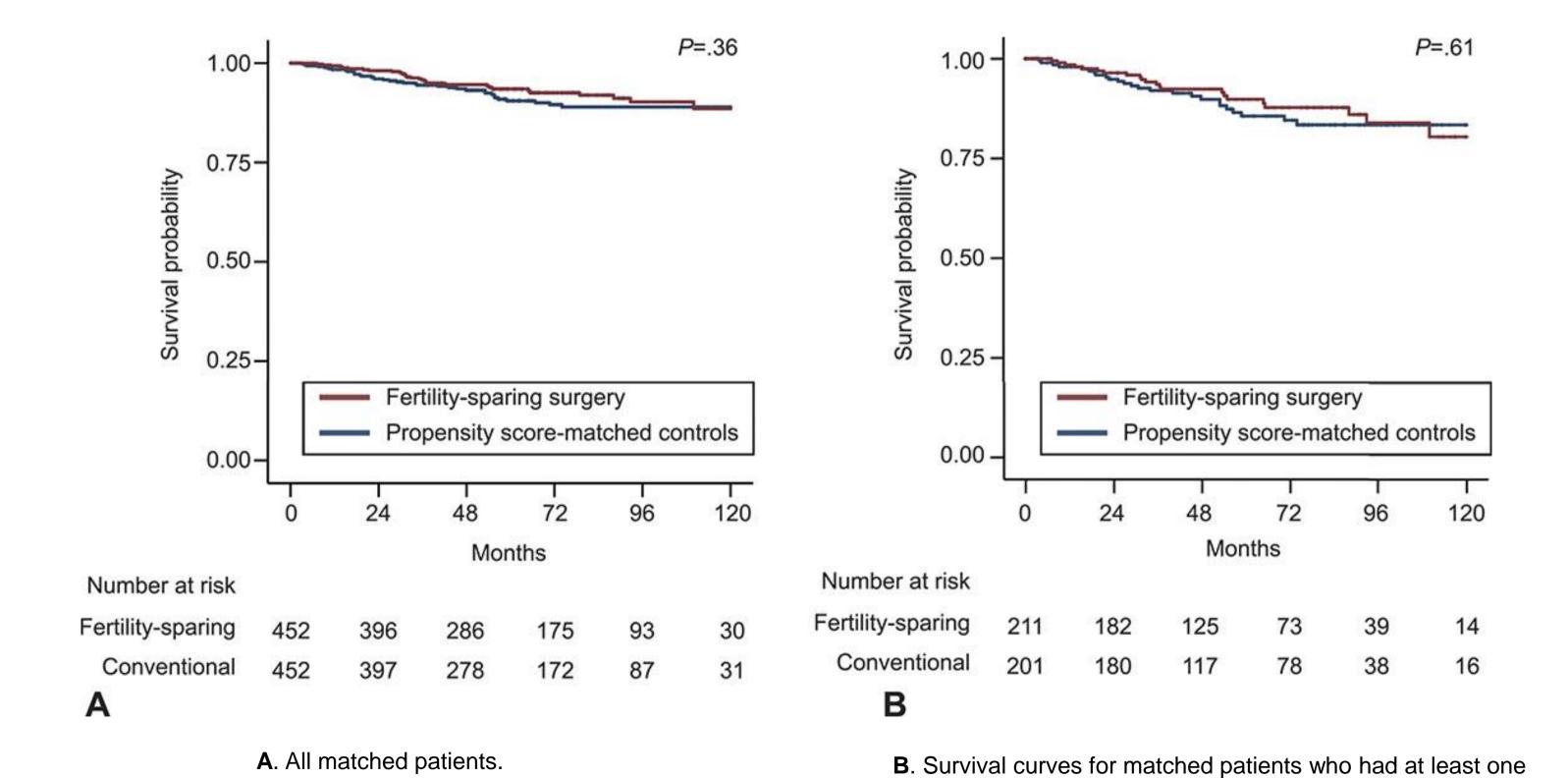
- → HISTOLOGY: LOW GRADE serous, endometrioid or mucinous expansile subtype
- → STAGE: IA (FIGO 2014)
- → IC1? 50% of isolated recurrence on the remaining ovary
- → AGE? OVARIAN RESERVE? CO-MORBIDITIES?
- 1. Ditto A, Bogani G, Martinelli F, et al. Fertility-sparing surgery in highrisk ovarian cancer. J Gynecol Oncol 2015;26:350–1.
- 2. Bentivegna E, Gouy S, Maulard A et al. Fertility-sparing surgery in epi-thelial ovarian cancer: a systematic review of oncological issues. AnnOncol 2016; 27(11):
- 3. Satoh T, Hatae M, Watanabe Y et al. Outcomes of fertility-sparing sur-gery for stage I epithelial ovarian cancer: a proposal for patient selec-tion. J Clin Oncol 2010; 28(10): 1727–1732.
- 4. Fruscio R, Corso S, Ceppi L et al. Conservative management of early-stage epithelial ovarian cancer: results of a large retrospective series. Ann Oncol 2013; 24(1): 138–144



#### **ONCOLOGICAL OUTCOMES**



Melamed, Alexander MD, MPH; Rizzo, Anthony E. MD; Nitecki, Roni MD; Gockley, Allison A. MD; Bregar, Amy J. MD, MS; Schorge, John O. MD; del Carmen, Marcela G. MD, MPH; Rauh-Hain, J. Alejandro MD. All-Cause Mortality After Fertility-Sparing Surgery for Stage I Epithelial Ovarian Cancer. Obstetrics & Gynecology 130(1):p 71-79, July 2017.


Table 1. Characteristics of Women With Stage IA and Unilateral IC Epithelial Ovarian Cancer Who Underwent Fertility-Sparing and Conventional Surgery, Before and After Propensity Score Matching (continued)

|                      | All Patie                 | nts (N=1,726)        |                | Propensity Score-Matched Patients* (n   |                      |                |
|----------------------|---------------------------|----------------------|----------------|-----------------------------------------|----------------------|----------------|
| Characteristic       | Fertility-Sparing (n=825) | Conventional (n=901) | P <sup>†</sup> | Fertility-Sparing (n=452)               | Conventional (n=452) | P <sup>†</sup> |
| Stage                |                           |                      | .26            |                                         |                      | .83            |
| ĬA                   | 546 (66.2)                | 573 (63.6)           |                | 291 (64.4)                              | 294 (65.0)           |                |
| IC                   | 279 (33.8)                | 328 (36.4)           |                | 161 (35.6)                              | 158 (35.0)           |                |
| Histologic type      |                           |                      | <.001          |                                         |                      | .94            |
| Clear cell           | 53 (6.4)                  | 99 (11.0)            |                | 42 (9.3)                                | 41 (9.1)             |                |
| Endometrioid         | 207 (25.1)                | 316 (35.1)           |                | 152 (33.6)                              | 141 (31.2)           |                |
| Mucinous             | 362 (43.9)                | 284 (31.5)           |                | 160 (35.4)                              | 168 (37.2)           |                |
| Other adenocarcinoma | 98 (11.9)                 | 115 (12.8)           |                | 47 (10.4)                               | 47 (10.4)            |                |
| Serous               | 105 (12.7)                | 87 (9.7)             |                | 51 (11.3)                               | 55 (12.2)            |                |
| Grade                |                           |                      | .002           |                                         |                      | .85            |
| 1                    | 298 (36.1)                | 340 (37.7)           |                | 168 (37.2)                              | 170 (37.6)           |                |
| 2                    | 201 (24.4)                | 251 (27.9)           |                | 123 (27.2)                              | 118 (26.1)           |                |
| 3                    | 111 (13.5)                | 143 (15.9)           |                | 67 (14.8)                               | 61 (13.5)            |                |
| Unknown              | 215 (26.1)                | 167 (18.5)           |                | 94 (20.8)                               | 103 (22.8)           |                |
| Tumor size (cm)      |                           |                      | .41            |                                         |                      | .92            |
| Less than 1.0        | 40 (4.8)                  | 33 (3.7)             |                | 18 (4.0)                                | 19 (4.2)             |                |
| 1.0-4.9              | 146 (17.7)                | 146 (16.2)           |                | 77 (17.0)                               | 74 (16.4)            |                |
| 5.0-9.9              | 106 (12.8)                | 139 (15.4)           |                | 69 (15.3)                               | 61 (13.5)            |                |
| 10-19.9              | 218 (26.4)                | 249 (27.6)           |                | 119 (26.3)                              | 126 (27.9)           |                |
| 20 or greater        | 129 (15.6)                | 127 (14.1)           |                | 68 (15.0)                               | 62 (13.7)            |                |
| Unknown              | 186 (22.5)                | 207 (23.0)           |                | 101 (22.3)                              | 110 (24.3)           |                |
| Lymphadenectomy      | , ,                       | , ,                  | <.001          | , , , , , , , , , , , , , , , , , , , , |                      | 1.0            |
| Yes                  | 510 (61.8)                | 754 (83.7)           |                | 341 (75.4)                              | 340 (75.2)           |                |
| No                   | 312 (37.8)                | 143 (15.9)           |                | 108 (23.9)                              | 109 (24.1)           |                |
| Unknown              | 3 (0.4)                   | 4 (0.4)              |                | 3 (0.7)                                 | 3 (0.7)              |                |
| Chemotherapy         |                           | , ,                  | <.001          |                                         |                      | .76            |
| Yes                  | 288 (34.9)                | 425 (47.2)           |                | 199 (44.0)                              | 188 (41.6)           |                |
| No                   | 504 (61.1)                | 439 (48.7)           |                | 235 (52.0)                              | 245 (54.2)           |                |
| Unknown              | 33 (4.0)                  | 37 (4.1)             |                | 18 (4.0)                                | 19 (4.2)             |                |

Data are median (interquartile range) or n (%) unless otherwise specified.

<sup>\*</sup> Each patient undergoing fertility-sparing surgery was matched, using a 1:1 nearest-neighbor algorithm, to the patient who was most similar on observed covariates but underwent conventional surgery. The propensity score model was based on all tabulated characteristics.





www.scientificseminars.com

high-risk feature (stage IC, clear cell histology, or high grade).

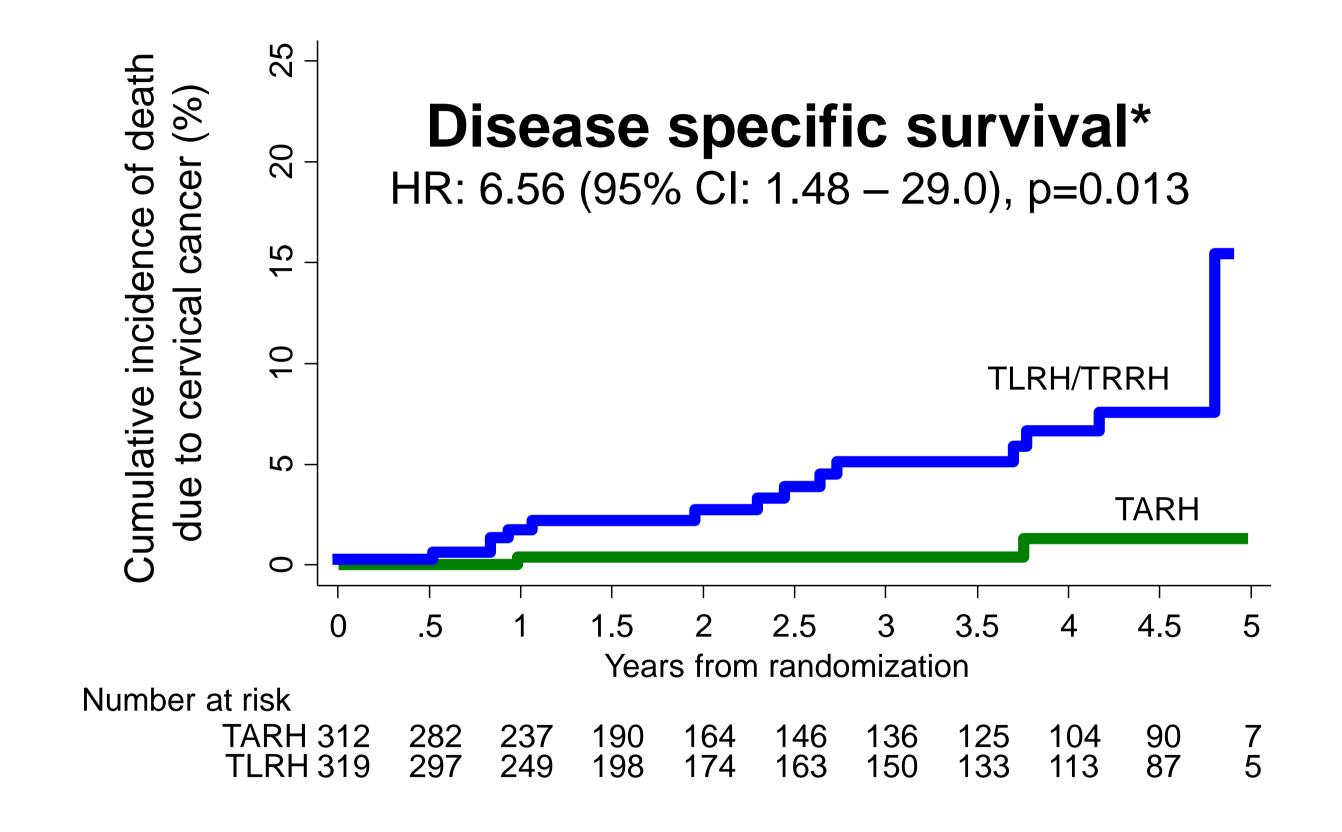


#### FERTILITY SPARING SURGERY

- → UNILATERAL SALPINGO-OOPHORECTOMY
- → COMPLETE SURGICAL STAGING

### Laparoscopy in ovarian cancer How far can we go?

In the late ninities and the beginning of 21 th century the use of laparoscopy in the field of gynaecologic cancer has increase dramatically with lots of retrospective data suggesting the safety of the minimal invasive surgery...

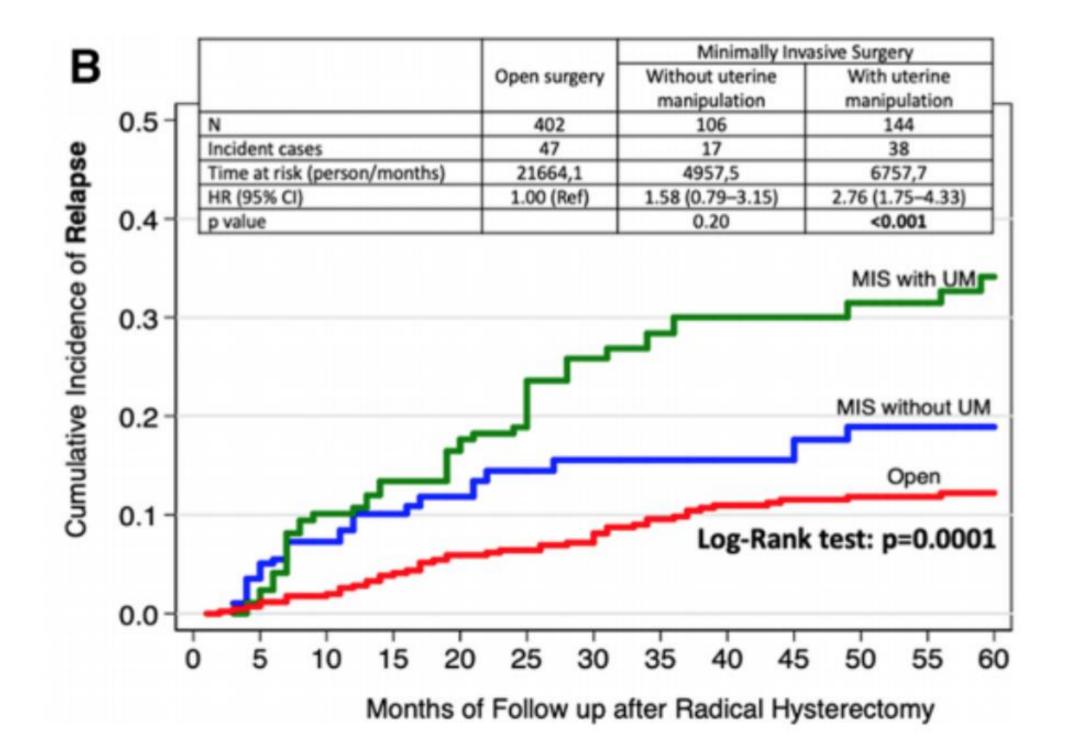

Since...

# Phase III Randomized Trial of Laparoscopic or Robotic Radical Hysterectomy vs. Abdominal Radical Hysterectomy in Patients with Early-Stage Cervical Cancer: LACC Trial

Pedro T. Ramirez, Michael Frumovitz, Rene Pareja, Aldo Lopez, Marcelo Vieira, Reitan Ribeiro, Alessandro Buda, Xiaojian Yan, Kristy P Robledo, Val Gebski, Robert L Coleman, Andreas Obermair

### Primary Objective LACC Trial

Compare <u>disease-free survival at 4.5 years</u> amongst patients who underwent a total <u>laparoscopic or robotic radical hysterectomy</u> (TLRH/TRRH) vs. a total abdominal radical hysterectomy (TARH) for early stage cervical cancer.




#### SUCCOR Study



SUCCOR study: an international European cohort observational study comparing minimally invasive surgery versus open abdominal radical hysterectomy in patients with stage IB1 cervical cancer L. Shiva et al.

→ Uterine manipulation



#### PUBMED: 12/2022

#### Laparoscopy early stage ovarian cancer

327 publications...

But 0 RCT level A evidence

Randomized clincal trails about the use of laparoscopy in early stage ovarian cancer = 0

Cochrane Database Syst Rev, 2016 vol. 10(10) CD005344 Laparoscopy versus laparotomy for FIGO stage I ovarian cancer.

Falcetta, FS; Lawrie, TA; Medeiros, LR; da Rosa, MI; Edelweiss, MI; Stein, AT; Zelmanowicz, A; Moraes, AB; Zanini, RR; Rosa, DD This review has found no good-quality evidence to help quantify the risks and benefits of laparoscopy for the management of early-stage ovarian cancer as routine clinical practice.

#### PUBMED 12/2022: Operative laparoscopy for interval debulking ovarian cancer

176 references...

#### But 0 RCT level A evidence

Randomized clincal trails about the use of laparoscopy interval debulking surgery= 0

Gynecol Obstet Fertil Senol, 2021 vol. 49(10) pp. 736-743 [Epithelial ovarian cancers and minimally invasive cytoreductive surgery after neoadjuvant chemotherapy: A systematic review]. Achen, G; Koual, M; Bentivegna, E; Fournier, L; Nguyen Xuan, HT; Delanoy, N; Bats, AS; Azaïs, H

# Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial

Jony van Hilst, Thijs de Rooij, Koop Bosscha, David J Brinkman, Susan van Dieren, Marcel G Dijkgraaf, Michael F Gerhards, Ignace H de Hingh, Tom M Karsten, Daniel J Lips, Misha D Luyer, Olivier R Busch, Sebastiaan Festen\*, Marc G Besselink\*, for the Dutch Pancreatic Cancer Group

Interpretation Although not statistically significant, laparoscopic pancreatoduodenectomy was associated with more complication-related deaths than was open pancreatoduodenectomy, and there was no difference between groups in time to functional recovery. These safety concerns were unexpected and worrisome, especially in the setting of trained surgeons working in centres performing 20 or more pancreatoduodenectomies annually. Experience, learning curve, and annual volume might have influenced the outcomes; future research should focus on these issues.

#### Effect of Laparoscopic-Assisted Resection vs Open Resection on Pathological Outcomes in Rectal Cancer The ALaCaRT Randomized Clinical Trial

Andrew R. L. Stevenson, MB BS, FRACS<sup>1,2</sup>; Michael J. Solomon, MB BCh, MSc, FRCSI, FRACS<sup>3</sup>; John W. Lumley, MBBS, FRACS<sup>4</sup>; et al

> Author Affiliations | Article Information

JAMA. 2015;314(13):1356-1363. doi:10.1001/jama.2015.12009

Published in final edited form as:

JAMA. 2015 October 06; 314(13): 1346-1355. doi:10.1001/jama.2015.10529.

#### Effect of Laparoscopic-Assisted Resection vs Open Resection of Stage II or III Rectal Cancer on Pathologic Outcomes:

The ACOSOG Z6051 Randomized Clinical Trial

"Among patients with T1-T3 rectal tumors, noninferiority of laparoscopic surgery compared with open surgery for successful resection was not established. Although the overall quality of surgery was high, these findings do not provide sufficient evidence for the routine use of laparoscopic surgery."

Surgery in ovarian cancer:

a unique goal: NO RESIDUAL TUMOUR

« EVALUATION OF THE RESECTABILITY»

#### Reason for unresectability...

1. Poor MedicalconditionsPS/ASA/Age

Anatomical/functional/
reasons...
Small bowel +++
Distant liver or lung
metastases

3. Surgical insufficiancy...
Human/Material

#### Laparoscopy +++

The same as HIPEC for colorectal surgery...

Laterza et al. In Vivo. 2009 Jan-Feb;23(1):187-90.

Table II. Literature and present study data on effectiveness of laparoscopic evaluation in predicting the completeness of cytoreduction.

| Authors (ref.)            | Year | No. of patients | Disease                              | Sensitivity (%) | Specificity (%) | Accuracy (%) | PPV<br>(%) | NPV<br>(%) |
|---------------------------|------|-----------------|--------------------------------------|-----------------|-----------------|--------------|------------|------------|
| Pomel <i>et al</i> . (12) | 2005 | 11              | PM, ovarian and colorectal cancer PC | 100             | NA              | 91           | 87.5       | NA         |
| Valle and Garofalo (13)   | 2006 | 97              | PM, PMP, GI and breast PC Sarcomas   | 100             | NA              | 98           | 98         | NA         |
| Present study             | 2008 | 33              | PM                                   | 100             | 75              | 97           | 97         | 100        |

PM: peritoneal mesothelioma; PMP: pseudomixoma peritonei; PC: peritoneal carcinomatosis; GI: gastrointestinal; NA: not available; PPV: positive predictive value; NPV: negative predictive value.

#### Advantage of laparoscopy

1 Biopsies

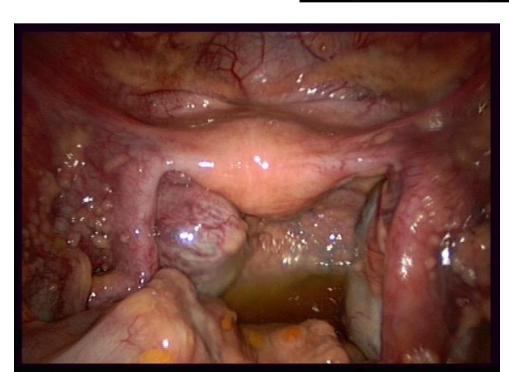
2 simple

PCI scopy = PCI tomy

Small bowel

omentum

pelvis


Anterior part of the diaphragm

Abdominal wall, parieto-colic gutters...

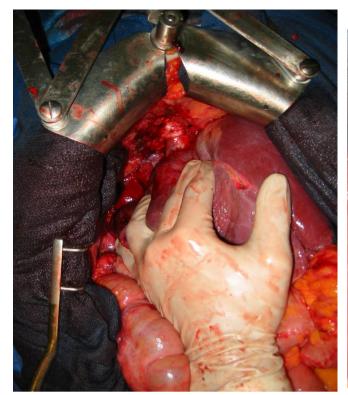


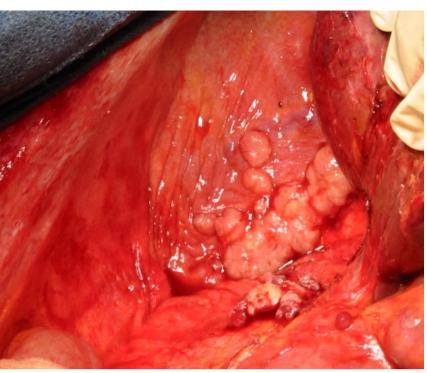


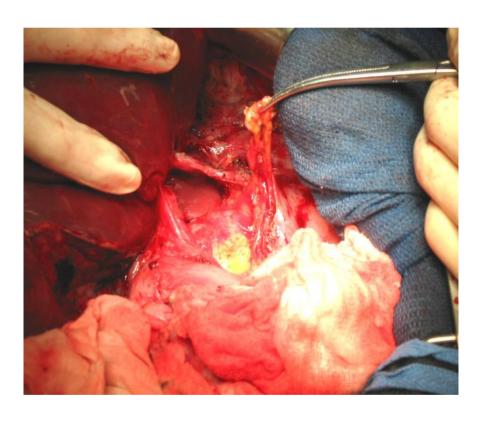


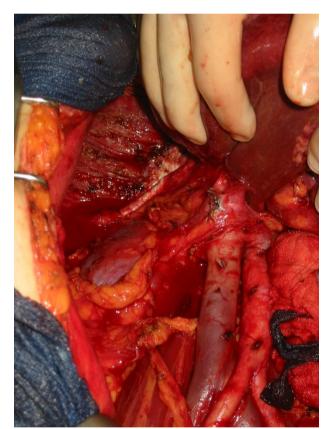


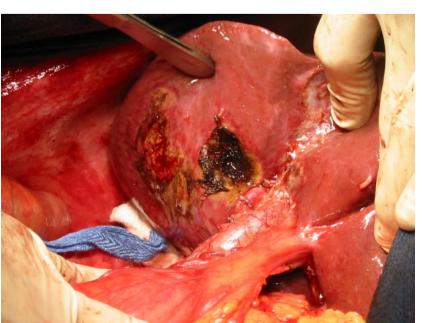
#### Pitfalls of LAPAROSCOPY


#### PCI scopy < PCI tomy


Fixed omental cakes that reduce visibility of the small bowel+++


Infiltration of supra-hepatic vessels and porta (extremely rare in first line treatment)

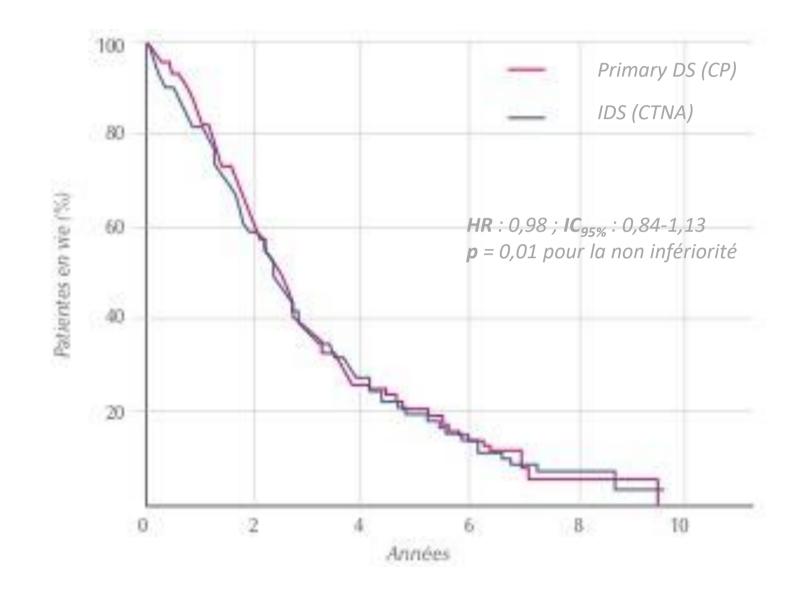

Lesser sac with infiltration of gastric vessels


Coeliac trunk












Is there a place of operative laparoscopy in AOC?

# Rate of NEO ADJUVANT CHEMOTHERAPY (NAC)

50 à 70 % IN « EXPERT CENTRES »...! (Luyckx et al.)



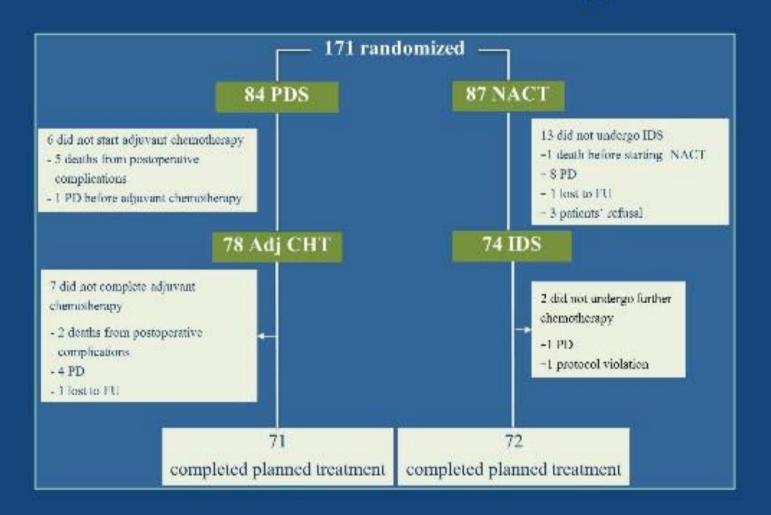
(EORTC 55971)

|     |     | At risk |     |    |    |   |
|-----|-----|---------|-----|----|----|---|
| PDS | 253 | 336     | 189 | 62 | 14 | 2 |
| IDS | 245 | 334     | 195 | 46 | 13 | 2 |

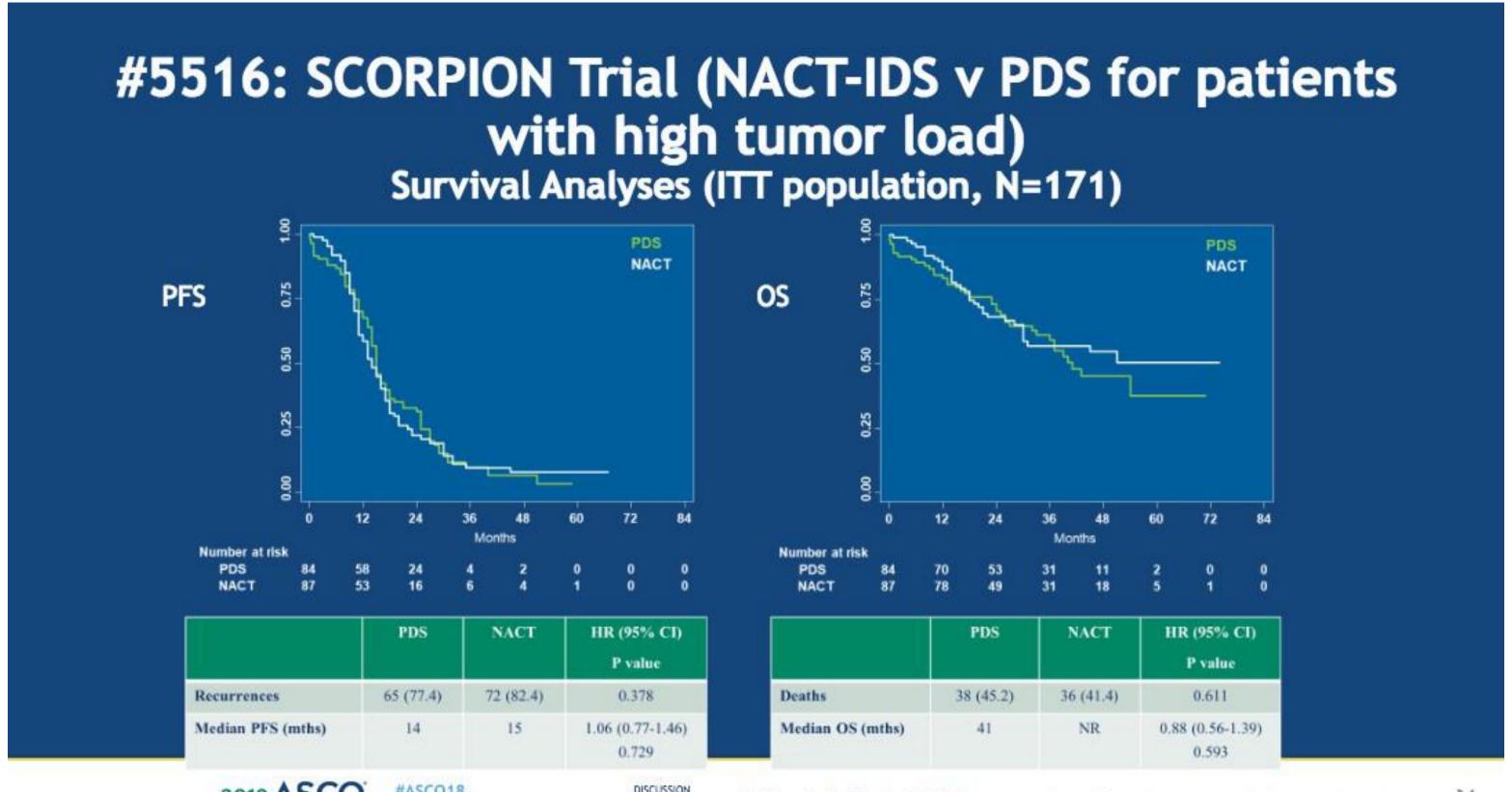
<sup>1.</sup> Vergote I, et al. European Organization for Research and Treatment of Cancer-Gynaecological Cancer Group; NCIC Clinical Trials Group. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2010;363(10):943-

|                         | EORTC (2010) |            | CHORUS (2015) |            | JCOG       |            |
|-------------------------|--------------|------------|---------------|------------|------------|------------|
|                         | PDS          | NAC        | PDS           | NAC        | PDS        | NAC        |
| Age                     | 62 (25-86)   | 63 (33-81) | 66 (26-87)    | 65 (34-88) | 59 (30-75) | 60 (36-75) |
| PS 2-3                  | 40 (12%)     | 44 (13%)   | 54 (20%)      | 53 (19%)   | 19 (13%)   | 21 (14%)   |
| Stage IV                | 77 (23%)     | 81 (24%)   | 70 (25%)      | 68 (25%)   | 49 (33%)   | 47 (31%)   |
| CA 125                  | 1130         | 1180       | NA            | NA         | 1950       | 1556       |
| Clear Cell/<br>mucinous | 14 (4%)      | 15 (4%)    | 6 (2%)        | 17 (8%)    | 14 (10%)   | 6 (5%)     |

Survival analyses from a randomized trial of primary debulking surgery versus neoadjuvant chemotherapy for advanced epithelial ovarian cancer with high tumor load (SCORPION trial) (NCT01461850)


Fagotti A, Ferrandina G, Vizzielli G, Fanfani F, Gallotta V, Chiantera V, Costantini B, Margariti PA, Gueli Alletti S, Cosentino F, Tortorella L, Scambia G.

Fondazione Policlinico Universitario A. Gemelli, IRCCS Università Cattolica del Sacro Cuore, Rome, Italy


Abs #5516

#### #5516: SCORPION Trial (NACT-IDS v PDS for patients with high tumor load)

**CONSORT Diagram and Patient Characteristics** 



| Variable                        | Arm A<br>PDS<br>N. (%)              | Arm B<br>NACT<br>N. (%)             |
|---------------------------------|-------------------------------------|-------------------------------------|
| All cases                       | 84                                  | 87                                  |
| FIGO surgical stage IIIC        | 7 <del>1 (84.5)</del><br>13 (15.5)  | 79 (90.8)<br>8 (9.2)                |
| LPS score at diagnosis  8 10 12 | 46 (54.8)<br>28 (33.3)<br>10 (11.9) | 34 (39.1)<br>43 (49.4)<br>10 (11.5) |



RESENTED AT: 2018 ASCO ANNUAL MEETING

#ASCO18
Stides are the property of the author, permission regulared for reuse.

PRESENTED BY: Stéphanie Gaillard, MD PhD

Adapted from Fagotti et al. Abstract #5516

24

# % NEO ADJUVANT CHEMOTHERAPY (NAC)

50 à 70 % IN « EXPERTS CENTRES »...! (Luyckx et al.)

ALSO...

>20% of patients treated by NAC will have close to complete response

Why to perform a medial xypho-pubic laparotomy for this selected group of patients?

#### **CILOVE STUDY**

Laparoscopic management of advanced epithelial ovarian cancer after neoadjuvant chemotherapy: a phase II prospective multicenter non-randomizedtrial (CILOVE study)

Pomel c et al IJGC 2021 31(12) pp1272-78

#### Primary objective:

#### → Rate of conversion to laparotomy

#### Secondary objectives:

Rate of trocarts metastases

→ clinical exam, CA125, CTscan every 6 month, RECIST 1.1.

#### Morbidity

Death, per and post-op complications (Clavien-Dindo)

#### Pain

Pre-op EVA, during hospitalisation, 1 week post-op, 1 month, 3 months and 6 months post-op.

#### QOL

QLQ-C30 inclusion, 1 week, 1 month, 3 and 6 months,

#### **Economic evaluation**

→ Surgical cost, per and post op

- Prospective non randomized multi centre study
- 1 step fleming

n=47 patients

15% minimum rate of laparotomy 35% maxmimum rate

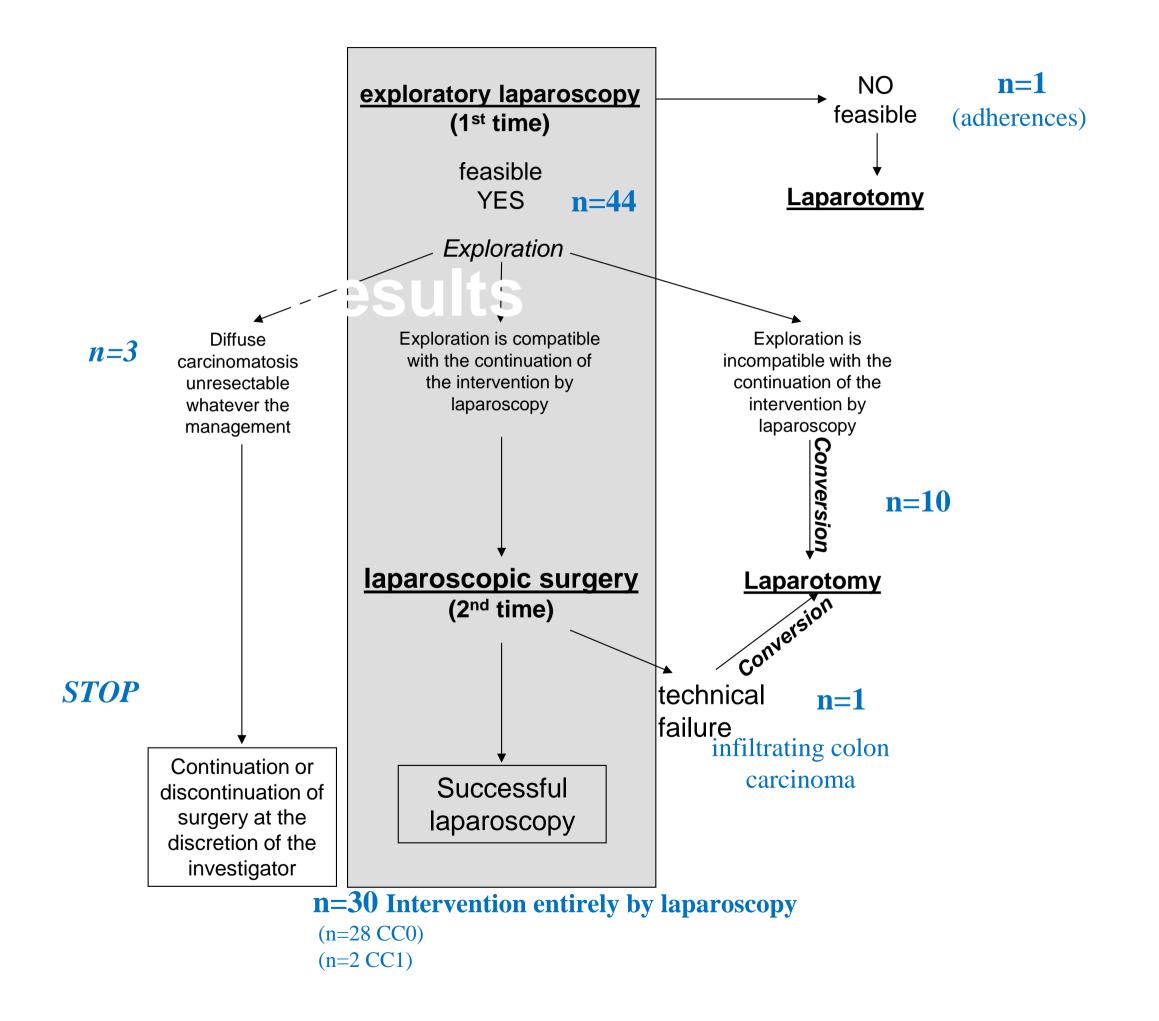
Positive if 37 patients with no conversion

#### Inclusion criteria

- Consent form signed.
- ■Age ≥ 18 yo
- **■**PS: OMS < 2
- •Unresectable Epithelial ovarian, tubal or primary peritoneal cancer:
  - Stage IV FIGO by imaging (CT scan ou PET CT)
  - Unresectable stage IIIc disease I
  - patients uneligible for primary debulking
- ■No primary debulking.
- ■A minimum of 3 cycles of neoadjuvant chemotherapy.

#### Inclusion criteria

- Patients sensitive to first line chemotherapy CT SCAN
  - No residual supra colic peritoneal carcinosis
  - Less than 10 cm residual pelvic disease
  - Less than 1 cm retroperitoneal nodes


#### Non inclusion criteria

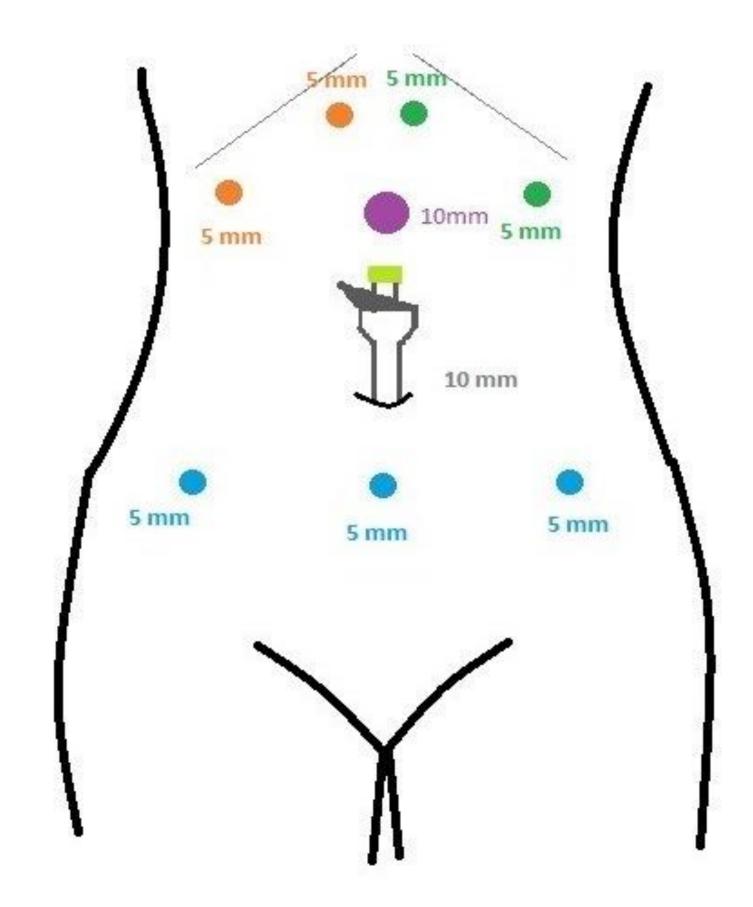
- Patients unsuitable for laparoscopy
- Psychiatric disorders.
- Patients enrolled in a surgical trial

#### Minimum surgical requirements:

- Peritoneal cytology
- ■TAH BSO
- Appendicectomy
- Total infragastric omentectomy
- Lymphadenectomy to the discretion of the surgeons

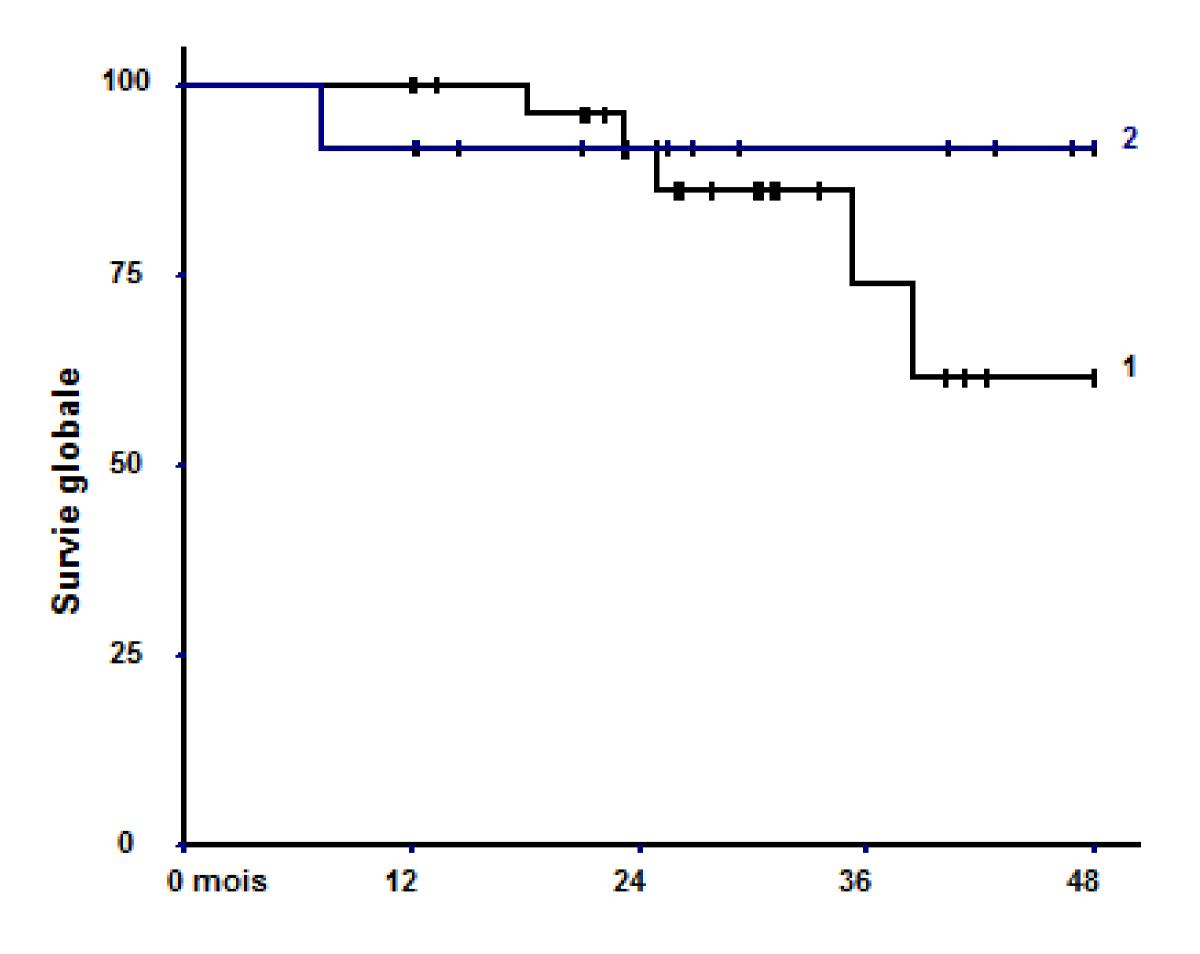
A minimum of 3 peritoneal biopsies in case of complete response.






LPS laparoscopy, S-LPS staging laparoscopy, LPT laparotomy, CT cytoreductive surgery

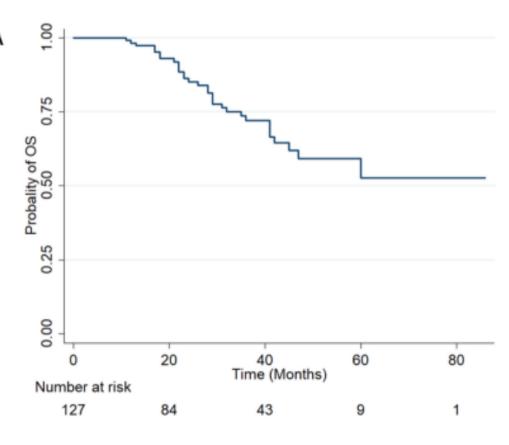
| Patient                               | PCI during      | PCI CT scan      | Residual                                  |                                                                                  |  |  |
|---------------------------------------|-----------------|------------------|-------------------------------------------|----------------------------------------------------------------------------------|--|--|
| number                                | intervention    | proofreading     | mass                                      |                                                                                  |  |  |
| Patients not eligible for laparoscopy |                 |                  |                                           |                                                                                  |  |  |
| 1                                     | 19              | 3                | Left ovary 32<br>mm                       | carcinomatosis of the right diaphragm dome and mesentery                         |  |  |
| 2                                     | 17              | 11               |                                           | Carcinomatosis of the right diaphragmatic dome and the small omentum.            |  |  |
| 3                                     | 4               | 8                |                                           | carcinomatosis of the right and left diaphragmatic domes and unexplorable pelvis |  |  |
| 4                                     | 10              | 8                |                                           | carcinomatosis of the right and left diaphragmatic domes                         |  |  |
| 5                                     | 10              | 3                |                                           |                                                                                  |  |  |
| 6                                     | 12              | 5                | Right ovary<br>27 mm                      | supra mesocolic carcinomatosis                                                   |  |  |
| 7                                     | 15              | 5                | Right ovary<br>30mm                       | mesentery carcinomatosis                                                         |  |  |
| 8                                     | 3               | 5                | Right ovary<br>37mm / left<br>ovary 32 mm |                                                                                  |  |  |
| 9                                     | 3               | 3                |                                           | dense adhesions between the omentum and parietal meshes                          |  |  |
|                                       | Patients eligib | le to laparoscop | y but for whom                            | a conversion was necessary                                                       |  |  |
| 10                                    | 5               | 5                |                                           | conversion for carcinomatosis and adhesion                                       |  |  |
| 11                                    | 0               | 3                | Right ovary<br>20mm                       | conversion for multiple dense adhesions                                          |  |  |
| 12                                    | N/A             | N/A              |                                           | conversion for poor laparoscopic evaluation of transverse colon involvement      |  |  |

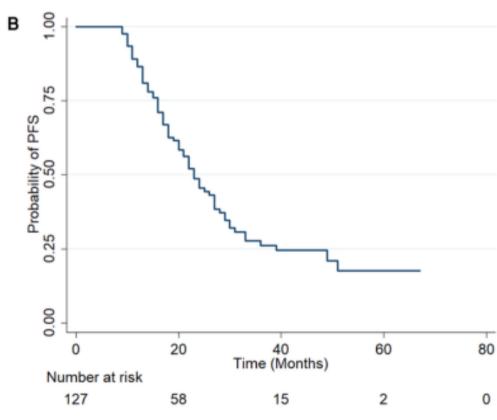

|                            | Eligible to CT-LPS | successful CT-LPS | technical        |
|----------------------------|--------------------|-------------------|------------------|
|                            |                    |                   |                  |
|                            | (n=32)             | (n=29)            | conversion (n=3) |
| PCI (median, range)        | 2 [0-13]           | 2 [0-13]          | 0 [0-3]          |
| Median Operative time (mn) | 274                | 264               | 222              |
| <b>Estimated blood</b>     | 172                | 176               | 125              |
| loss (ml)                  |                    |                   |                  |
| Blood                      | 5 (16)             | 5 (18)            | 0                |
| transfusion (%)            |                    | ,                 |                  |
| Residual tumor             |                    |                   |                  |
| - CC-0                     | 31                 | 28                | 3                |
| - CC-1                     | 1                  | 1                 | 0                |
|                            |                    | _                 |                  |
| Median length of           | 6.9                | 6.6               | 10               |
| stay                       |                    |                   |                  |
| MedianTime (day)           | 36.8               | 37.4              | 52               |
| to start                   |                    |                   |                  |
| chemotherapy               |                    |                   |                  |

Trocars number: 4 to 9



|                           | Eligible to CT-LPS | Successful CT-LPS  | Technical        |
|---------------------------|--------------------|--------------------|------------------|
|                           |                    |                    |                  |
| Intropropries             | (n=32)             | (n=29)             | conversion (n=3) |
| Intraoperative            | 2 (50()            |                    |                  |
| complication              | 2 (6%)             | 4 (20()            |                  |
| Medical incident          | 1 (3%)             | 1 (3%) bradycardia |                  |
| Surgical incident         | 1 (3%)             | 1 (3%)             |                  |
|                           |                    | diaphragmatic      |                  |
|                           |                    | hernia             |                  |
| Major Post-               | 0                  | 0%                 | 0%               |
| operative                 |                    |                    |                  |
| complication grade        |                    |                    |                  |
| 3-4* (< 1 month)          |                    |                    |                  |
|                           | 2 (grade 2:        | 2                  | 0                |
| Re-admission              | intervention du to | 1                  | 0                |
| Re-intervention           | dura mater breach) |                    |                  |
|                           | 1 paracentesis     |                    |                  |
| <b>Major Complication</b> | 4                  | 5                  |                  |
| delayed (grade 3-         |                    |                    |                  |
| 4*)                       | 1                  | 1                  | 0                |
| Thromboembolic            | 1                  | 1                  |                  |
| Occlusion                 | 1                  | 1                  | 0                |
| lymphocyst                | 1                  | 4                  | 0                |
| hematoma                  | 2                  | 2                  | 0                |
| sphincterial trouble      | 1                  |                    | 1 cementoplasty  |
| other                     |                    |                    |                  |
|                           | 4                  | 7                  | 0                |
| Rehospitalization         | 1                  | 1                  | 0                |


#### Résultats




#### CYNECOLOGICAL CANCER THE INTERNATIONAL MISSION study: minimally invasive surgery in ovarian neoplasms after neoadjuvant chemotherapy

A Fagotti, 1,2 S Gueli Alletti, 1 G Corrado, 3 E Cola, 2 E Vizza, 3 M Vieira, 4 C E Andrade, 4 A Tsunoda, 4 G Favero, 5 I Zapardiel, 6 T Pasciuto, 7 G Scambia 1,2

| Table 3 Surgical data             |              |  |  |  |  |  |  |
|-----------------------------------|--------------|--|--|--|--|--|--|
| Surgical data                     |              |  |  |  |  |  |  |
| Variable                          | No. (%)*     |  |  |  |  |  |  |
| All cases                         | 127          |  |  |  |  |  |  |
| Type of surgery:                  | A            |  |  |  |  |  |  |
| Hysteretomy +/-BSO†               | 122 (96.1)   |  |  |  |  |  |  |
| Omentectomy                       | 111 (87.4)   |  |  |  |  |  |  |
| Regional peritonectomy            | 50 (39.4)    |  |  |  |  |  |  |
| Pelvic/aortic lymphadenectomy     | 38 (29.9)    |  |  |  |  |  |  |
| Appendectomy                      | 8 (6.3)      |  |  |  |  |  |  |
| Diaphragmatic stripping           | 6 (4.7)      |  |  |  |  |  |  |
| Bowel resection                   | 3 (2.4)      |  |  |  |  |  |  |
| Redidual tumor:                   |              |  |  |  |  |  |  |
| 0                                 | 122 (96.1)   |  |  |  |  |  |  |
| <1                                | 5 (3.9)      |  |  |  |  |  |  |
| Median OT (range)                 | 225 (60-600) |  |  |  |  |  |  |
| Median discharge time, d (range)  | 2 (1-33)     |  |  |  |  |  |  |
| Intra-operative blood transfusion | 2 (1.6)      |  |  |  |  |  |  |
| Median EBL, ml (range)            | 100 (70-1320 |  |  |  |  |  |  |
| Estimated median TTC, d (range)‡  | 20 (15-60)   |  |  |  |  |  |  |

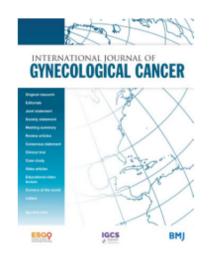




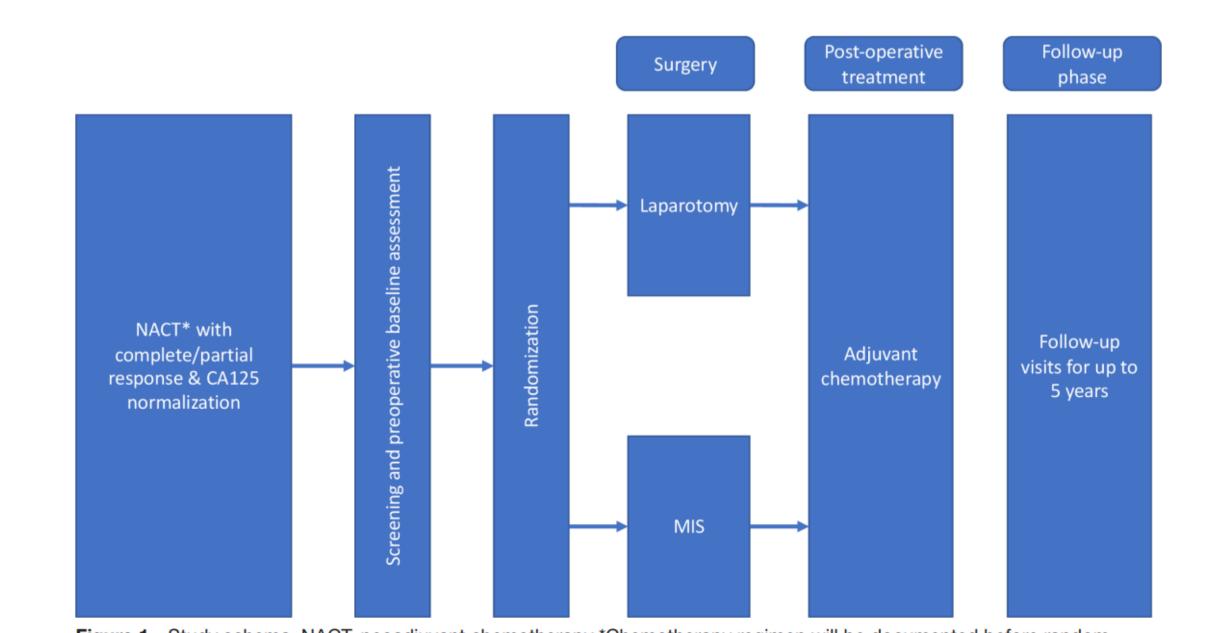
#### National Cancer Database

3,071 women

450 (15%) underwent surgery initiated laparoscopically after NAC.


There was no difference in 3-year survival between patients undergoing laparoscopy [47.5%; 95% confidence interval (CI) 41.4-53.5] and laparotomy (52.6%; 95% CI 50.3-55.0; P=.12).

Survival did not differ after adjustment for demographic characteristics, facility type, presence of comorbidities, and stage (adjusted hazard ratio, 1.09; 95% CI 0.93-1.28; P=.26).


Laparoscopy Compared With Laparotomy for Debulking Ovarian Cancer After Neoadjuvant Chemotherapy

Alexander Melamed 1, Roni Nitecki, David M Boruta 2nd, Marcela G Del Carmen, Rachel M Clark, Whitfield B Growdon, Annekathryn Goodman, John O Schorge, J Alejandro Rauh-Hain

#### FIRST RCT!



### **Laparoscopic cytoreduction After Neoadjuvant ChEmotherapy (LANCE)**





#### Laparoscopy and ovarian cancer; How far can we go?

#### Take-home messages

- √ The oncologic safety of laparoscopy in ovarian cancer is uncertain
  - √ Highly controversial in Advanced stage (No RCT level A)
  - ✓ Uncertain in early stage (No RCT level A)
- √ A good tool to select patients eligible for complete debulking

#### THANK YOU



